If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-96=0
a = 72; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·72·(-96)
Δ = 27648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27648}=\sqrt{9216*3}=\sqrt{9216}*\sqrt{3}=96\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96\sqrt{3}}{2*72}=\frac{0-96\sqrt{3}}{144} =-\frac{96\sqrt{3}}{144} =-\frac{2\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96\sqrt{3}}{2*72}=\frac{0+96\sqrt{3}}{144} =\frac{96\sqrt{3}}{144} =\frac{2\sqrt{3}}{3} $
| 36=5x+x² | | -11+5k=1+7k | | 4m+3=13-3 | | 8/3x-1/x=7/9 | | 2(x-4)^5(x+7)^2=0 | | 2x+4+Y=52 | | 7(7x-12)=-3x+228 | | (2x+4)+Y=52 | | 5-(x+1)=2x+5 | | 5x-12=-5x-2 | | -3x+4=16-6x | | -76-x=2(39-4x) | | 7a+2a=-16-7a | | X+y=-27 | | -3f^2+54f=-105 | | 4x-173=3(-7x-16) | | 10x+2x+3(x+8)-30=0 | | 2m^2-40m+18=0 | | 2y-3=52y | | 5^x^2-3=72 | | 48=(w)(w+2)(2) | | 0.9=0.15(b+9) | | 6d=1/3 | | 3(6n-4)=75 | | 3(2t+2)=6(t+1) | | 3(x-4)+5(x-2)=2(x-6)-4(5-x) | | 2x+1.141x=171 | | 1x2=5x+4 | | 4(-2x-3)=-2(5x+1)-32 | | 2.5y+7.5y=5.2 | | 2a-(5a-7)=21 | | 2y^2+2y=84 |